Organization and regulation of cortical microtubules during the first cell cycle of Xenopus eggs.
نویسندگان
چکیده
Anti-tubulin antibodies and confocal immunofluorescence microscopy were used to examine the organization and regulation of cytoplasmic and cortical microtubules during the first cell cycle of fertilized Xenopus eggs. Appearance of microtubules in the egg cortex temporally coincided with the outgrowth of the sperm aster. Microtubules of the sperm aster first reached the animal cortex at 0.25, (times normalized to first cleavage), forming a radially organized array of cortical microtubules. A disordered network of microtubules was apparent in the vegetal cortex as early as 0.35. Cortical microtubule networks of both animal and vegetal hemispheres were reorganized at times corresponding to the cortical rotation responsible for specification of the dorsal-ventral (D-V) axis. Optical sections suggest that the cortical microtubules are continuous with the microtubules of the sperm aster in fertilized eggs, or an extensive activation aster in activated eggs. Neither assembly and organization, nor disassembly of the cortical microtubules coincided with MPF activation during mitosis. However, cycloheximide or 6-dimethylaminopurine, which arrest fertilized eggs at interphase, blocked cortical microtubule disassembly. Injection of p13, a protein that specifically inhibits MPF activation, delayed or inhibited cortical microtubule breakdown. In contrast, eggs injected with cyc delta 90, a truncated cyclin that arrest eggs in M-phase, showed normal microtubule disassembly. Finally, injection of partially purified MPF into cycloheximide-arrested eggs induced cortical microtubule breakdown. These results suggest that, despite a lack of temporal coincidence, breakdown of the cortical microtubules is dependent on the activation of MPF.
منابع مشابه
Organization and regulation of cortical microtubuies during the first cell cycle of Xenopus eggs
Anti-tubulin antibodies and confocal immunofluorescence microscopy were used to examine the organization and regulation of cytoplasmic and cortical microtubuies during the first cell cycle of fertilized Xenopus eggs. Appearance of microtubuies in the egg cortex temporally coincided with the outgrowth of the sperm aster. Microtubuies of the sperm aster first reached the animal cortex at 0.25, (t...
متن کاملO-10: A Marked Animal-Vegetal Polarity in The Localization of Na+,K+-ATPase Activity and Its Down-Regulation Following Progesterone-Induced Maturation
Background: Polarized cells are key to the process of differentiation. Xenopus oocyte is a polarized cell that has complete blue-print to differentiate 3 germ layers following fertilization, as key determinant molecules (Proteins and RNAs) are asymmetrically localized. The objective of this work was to localize Na+, K+-ATPase activity along animal-vegetal axis of polarized Xenopus oocyte and fo...
متن کاملEvidence for the involvement of microtubules, ER, and kinesin in the cortical rotation of fertilized frog eggs
During the first cell cycle, the vegetal cortex of the fertilized frog egg is translocated over the cytoplasm. This process of cortical rotation creates regional cytoplasmic differences important in later development, and appears to involve an array of aligned microtubules that forms transiently beneath the vegetal cortex. We have investigated how these microtubules might be involved in generat...
متن کاملXMAP230 is required for the assembly and organization of acetylated microtubules and spindles in Xenopus oocytes and eggs.
We used affinity-purified polyclonal antibodies to characterize the distribution and function of XMAP230, a heat-stable microtubule-associated protein isolated from Xenopus eggs, during oogenesis. Immunoblots revealed that XMAP230 was present throughout oogenesis and early development, but was most abundant in late stage oocytes, eggs, and early embryos. Immunofluorescence microscopy revealed t...
متن کاملHow does a millimeter-sized cell find its center?
Microtubules play a central role in centering the nucleus or mitotic spindle in eukaryotic cells. However, despite common use of microtubules for centering, physical mechanisms can vary greatly, and depend on cell size and cell type. In the small fission yeast cells, the nucleus can be centered by pushing forces that are generated when growing microtubules hit the cell boundary. This mechanism ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 114 3 شماره
صفحات -
تاریخ انتشار 1992